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Deep Learning-Driven Detection and Mapping of
Rockfalls on Mars
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Abstract—The analysis of rockfall distribution and magnitude
is a useful tool to study the past and current endogenic and exo-
genic activity of Mars. At the same time, tracks left by rockfalls
provide insights into the mechanical properties of the Martian
surface. While a wealth of high-resolution spaceborne image data
are available, manual mapping of displaced boulders with tracks
is inefficient and slow, resulting in: 1) a small total number of
mapped features; 2) inadequate statistics; and 3) a suboptimal
utilization of the available big data. This study implements a deep
learning-driven approach to automatically detect and map Martian
boulders with tracks in high resolution imaging science experiment
(HiRISE) imagery. Six off-the-shelf neural networks have been
trained either on Martian or lunar rockfall data, or a combination
of both, and are able to achieve a maximum overall recall of up
to 0.78 and a maximum overall precision of up to 1.0, with a mean
average precision of 0.71. The fusion of training data from different
planets and sensors results in an increased detection precision,
highlighting the value of domain generalization and multidomain
learning. Average processing time per HiRISE image is∼45 s using
an NVIDIA Titan Xp, which is more than one order of magnitude
faster than a human operator. The developed deep learning-driven
infrastructure can be deployed to map Martian rockfalls on a global
scale and within a realistic timeframe.

Index Terms—Mars, multidomain learning, object detection,
rockfall.
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I. INTRODUCTION

MARS is a dynamic planet and recent surface activity has
been shown by a large number of studies using data

returned from ground-borne and spaceborne missions, such as
the Mars Science Laboratory (MSL or Curiosity) or the Mars
Reconnaissance Orbiter (MRO). While Mars is host to a variety
of active processes, mass wasting and aeolian processes are
particularly relevant for this study. Dynamic aeolian features
include dunes (e.g., [1], [2]) and dust devils (e.g., [3], [4])
that migrate across the Martian surface. Observed mass wast-
ing processes include polar ice and dust avalanches (e.g., [5],
[6]), rockfalls (e.g., [7]–[9]), slope streaks (e.g., [10]–[12]) and
potentially recurring slope lineae (RSL) (e.g., [13]–[15]). As for
RSL, other mass wasting phenomena are potentially related to
the action of volatiles, such as flows in gullies (e.g., [13], [16],
[17]) and flows over CO2 ice (e.g., [18]).

The occurrence, frequency, and magnitude of mass wasting
phenomena, and rockfalls in particular can be indicative of
seismic activity of planetary bodies or moons in general, as
several recent studies have shown ([7], [8] [19]–[21]). Thus,
suspected regions of increased seismic activity inferred from
rockfall frequency patterns could be priority targets for the de-
ployment of future geophysical networks. The tracks created by
extraterrestrial rockfalls, i.e., boulder tracks, are also a valuable
tool to estimate the basic mechanical properties of the surface
substrate present [22], [23].

However, the manual detection and mapping of Martian rock-
falls (boulders with tracks, here also called feature of interest)
in satellite imagery remains a challenging task. Since 2010,
MRO’s high resolution imaging science experiment (HiRISE)
[24] has returned tens of thousands of high-resolution images of
the Martian surface. While image data are abundant, traditional
mapping of rockfalls is slow and inefficient—a human operator
has to spend a substantial amount of time to scan through a
single HiRISE image, which is a tiring and arduous process,
particularly when mapping is performed over large regions using
an increased number of images. In addition, the mapping of rock-
falls on nonterrestrial surfaces is complicated by limitations of
the used image data (resolution and coverage). However, a high
number of rockfall detections is required to establish a robust
statistical analysis, which in turn is the basis for scientifically
robust conclusions. Previous studies on Martian rockfalls, such
as those performed in [8] and [25], would greatly benefit from
an increased number of detected and mapped boulders with
tracks.
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Fig. 1. Example of Martian and lunar rockfalls with their associated boulders and tracks (“feature of interest”). Overview image shows numerous rockfalls that
detached from a bedrock outcrop near an impact crater rim on Mars. During their displacement, the boulders bounce and roll leaving tracks on the slope’s substrate.
The downslope direction is towards the right. North is down. Detail of HiRISE image ESP_031280_1705. Bottom insets feature a close up of a Martian boulder
with its track in HiRISE image ESP_039901_1665 and a lunar boulder with track in NAC image M138107059LC. Image credits: NASA/JPL/UofA/LROC/ASU.

Here, we describe how we implemented and applied a deep
learning-based approach to automatically detect and map Mar-
tian rockfalls (boulders with tracks) in HiRISE imagery, to
significantly enhance the statistical relevance of state-of-the-art
geomorphological analyses on Mars. Deep learning-driven rock-
fall mapping in satellite imagery has first been demonstrated by
[26] on the Moon, where other surface activity is limited. For
the lunar environment, a convolutional neural network (CNN)
was able to achieve near-human detection performance while
reducing the required processing time (human versus machine)
by more than one order of magnitude. On Mars, [27] developed a
method to automatically detect ice falls in HiRISE images of the
northern polar caps, using support vector machines. Due to its
atmosphere and dynamic geologic environment, Mars generally
poses additional challenges for the detection and mapping of
rockfalls from orbit.

Combining experience from previous work with a novel mul-
tidomain learning approach, this study shows how deep learning
and off-the-shelf CNNs can be used to extract new and valu-
able information from underexploited, but challenging Martian
datasets, given the limitations of the available data. In addition,
this study is relevant in light of spacecraft autonomy, where
similar neural networks and infrastructures could be deployed
to optimize mission procedures, e.g., by using AI for onboard
selection of image data to improve utilization of the available
data transfer bandwidth from remote regions of the solar system.

This article is organized as follows. Section I-A intro-
duces Martian rockfalls and their physical appearance in high-
resolution images taken by HiRISE. Next, the available and used
datasets are described (Section I-B), followed by a description of

the applied deep learning approach (Section II). Finally, results
are presented and discussed (Sections III and IV), with a focus
on the limitations of the developed method and its value for
the exploration of the red planet. Section V concludes this
article.

A. Martian Rockfalls

Repeat coverage and high-resolution images (better than
0.5 m/pix–[24]) have revealed terrestrial-like rockfall (or boul-
der fall) present-day activity on Mars. Images show meter-scale
blocks (here called boulders) which have detached from a
bedrock cliff or boulder field, and have rolled/bounced downs-
lope, leaving a visible track on the surface behind them (see
Fig. 1). As aeolian processes are active on Mars (e.g., [1]),
tracks left by rockfalls infill or erode over time, meaning, visible
tracks are recent, forming during the Late Amazonian period
(conservatively the last few tens of millions of years). They have
been found on the walls of long, linear fissures (e.g., Cerberus
Fossae—[7]), valleys (e.g., Valles Marineris—[8]), as well as
impact craters [9].

Rockfalls can be produced by weathering (e.g., solar-induced
thermal stress—[25]) followed by fracture propagation in the
exposed rock (i.e., fatigue) at the top of a slope. In impact craters,
loose blocks could also be formed by impact events (ejecta
blocks) or could detach from ejecta blankets that have previously
been emplaced on the crater walls [28]. Once formed, boulders
move under the influence of gravity, while their displacement can
also be driven by external factors such as nearby marsquakes or
meteoritic impacts.
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Recently, the spatial distribution of boulder tracks has been
used to highlight the possibility of recent marsquakes in poten-
tially active regions (e.g., [7]). As energy is increased closer to a
seismic event, rockfall frequency and size should also increase
[29]. On a larger scale, spatial distribution of rockfalls can be
used to study active weathering processes responsible for rock
breakdown on Mars (e.g., [25]), as well as to estimate weathering
rates. Besides their implications for weathering processes and
seismic activity of Mars, rockfalls and their tracks can be used to
infer the mechanical properties of regolith, as demonstrated on
the Moon by, e.g., [30] during the Apollo era and recently by [22]
and [23], directly informing future surface exploration efforts.
A deep learning-enabled global study of rockfall distribution on
Mars could provide valuable information for a wide variety of
relevant scientific and exploration-related applications.

B. Available Datasets

The surface of Mars has been imaged and is currently be-
ing imaged by numerous spacecrafts. While many instruments
provide datasets with near-global coverage, such as ESA’s Mars
Express High Resolution Stereo Camera (HRSC, ∼15 m/pix),
and MRO’s Context Camera (CTX, ∼6 m/pix), their spatial res-
olution is insufficient to detect and map small geomorphological
features such as boulders with tracks. The highest resolution is
currently offered by MRO’s HiRISE camera that takes subnadir
images in the range from 0.25 to 0.75 m/pix with swath widths
of about 6 km [24]. HiRISE is a pushbroom sensor comprised
of 14 CCDs that provides data products with information in
three different channels, covering the spectral range from 400
to 1000 nm (visual to near infrared wavelength). However, full
multispectral coverage is only available for the central portion
of each swath (roughly a 1.2-km wide footprint on the ground,
i.e., approximately one-fifth of the entire image). The rest of
the image is only available in a single channel, the red channel
(550 to 850 nm). As the scope of this work is the detection
and mapping of rockfalls on a large spatial scale; the utilization
of imagery with maximum ground coverage has the highest
priority. For this reason, network training and inference has
been limited to the red channel, i.e., the full image swath. It has
to be noted that despite its superior spatial resolution, HiRISE
has not yet been able to cover a large portion of the Martian
surface (around 3.56% as of February 14th 2020) due to its
small footprint. Any analysis of rockfalls is therefore limited to
regions that have been observed by the camera—for humans as
for a CNN. Despite the reduced coverage, numerous targets of
high scientific value across all regions and latitudes have been
imaged, as illustrated by Fig. A1 in the Appendix. HiRISE’s
coverage might not be complete, but most geomorphological
contexts are represented in the data stack.

We used nonmap projected, full-resolution .jp2 HiRISE im-
ages for this work. These data have undergone standard radio-
metric calibration routines and the data from the 9 or 10 red
channel CCDs have been stitched to produce a single rectangular
image. The perfect rectangular, upright orientation of nonmap
projected HiRISE images helps to minimize the number of tiles
when an image is cut into smaller pieces to fit into the RAM

of the used GPUs, directly optimizing processing speeds. They
have the additional advantage that because no resampling of the
data has been performed in order to map-project the data, these
images represent the highest fidelity and resolution products.
By using the available metadata for these images, in particular
the coordinates of the image corners, the real-world coordinates
of the detections in an image can be reconstructed using their
respective image coordinates. Map-projected and, thus, rotated
images result in more and potentially empty (NaN) tiles, larger
file sizes, and consequently, longer processing times, which is
not optimal for machine learning applications. The used nonmap
projected .jp2s have been reduced to 8 bit to further improve
processing speeds and to enable the utilization of off-the-shelf
machine learning toolboxes and libraries. One limitation of
the nonmap projected products is that the stitching of these
products is performed considering only the spacecraft pointing
information and no postprocessing is done to improve the match
between the CCDs in the overlapping area (as is done for the
map-projected products). This means that there are visible seams
caused by CCD mismatch on these products.

Besides image data, the laser altimeter (MOLA) onboard the
Mars Global Surveyor (MGS) provides information about the
Martian topography and relief. The United States Geological
Survey (USGS) combined more than 600 million laser pulses
in a global map product with a resolution of 463 m/pix [31].
Using MOLA and HRSC data, [32] blended a new DEM with a
resolution of 200 m/pix. We include both products as potential
auxiliary data for this study.

II. METHODS

A. Deep Learning-Driven Object Detection

Recent advances in machine and deep learning have overcome
some of the issues in computer and machine vision, such as the
detection and classification of objects in images. An important
milestone was the development of two-stage region-based CNNs
(R-CNNs—[33]), and their subsequent improvements, i.e., fast
and faster R-CNNs [33]–[35]. Recently, [36] introduced the
so-called residual networks (ResNets) that solved the problem
of vanishing gradients during training, enabling deeper and
more powerful networks. Then, [37] established a much faster
single-stage architecture (RetinaNet) while adding a new loss
function (focal loss) that improves the training efficiency by
minimizing the weight assigned to well-classified examples.
RetinaNet consists of two main networks, a ResNet for deep fea-
ture extraction and a feature pyramid network (FPN [38]) for the
construction of rich, multiscale convolutional feature pyramids,
as well as two subnetworks, an anchor classification network
and an anchor regression network [37]. RetinaNet is outper-
forming other off-the-shelf state-of-the-art detectors in terms
of classification accuracy and speed [37], is robust, and well
established [39]–[41]. The combination of simplicity, reliability,
recognition, speed, and performance is the reason why we chose
RetinaNet for this study. We run RetinaNet with both ResNet50
and ResNet101 backbones [36], where the number refers to
the layers of the network, i.e., its depth. In theory, a deeper
neural network would yield better results, see, e.g., [42]. We
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used RetinaNet—with open-source software only—in Python3,
using Keras (v2.2.0, RetinaNet implementation by Fizyr—[43])
and TensorFlow (v1.7.0). For the training and inference, we used
two GPU-enabled desktop computers (NVIDIA GeForce GTX
1080 Ti and GeForce Titan Xp).

B. RetinaNet Labeling, Training, and Testing

Labels for training have been created by three experienced hu-
man operators (with domain knowledge) following the workflow
of [26], using 136 full-swath HiRISE images with varying spatial
resolutions and solar incidence angles, taken over different Mar-
tian regions (see Table A1 and Fig. A2 in the Appendix). Each
label represents a classification and localization of a rockfall by
a human operator that can be used by RetinaNet for training,
validation, and testing. We placed the labels in a way to train
the CNNs on the combination of boulder and track, to avoid
detections of tracks without boulders and boulders without
tracks (see Fig. A3 for details). The problem of how to label such
irregular features, such as rockfalls and tracks, is interesting and
is further discussed in Section IV. The used images are from a
wide range of longitudes and latitudes and represent a variety of
geomorphological contexts, i.e., crater slopes, fissures (graben),
and valleys (see Fig. A2). We trained and tested six different
CNNs. Their names indicate the origin of the main training
data (Ma for Mars and M for Moon), the level of complexity of
the training data (basic or complex), and the ResNet backbone
depth (either 50 or 101). Four CNNs are exclusively trained
with Martian image data while two CNNs are trained with a
combination of Martian and lunar rockfall labels, where lunar
labels were taken from [26], using NAC images [narrow angle
camera, ptif (pyramid tif) single band 8bit, see [26]]. The level of
complexity loosely describes the “difficulty” of the used training
labels: “Basic” labels contain very clear examples of rockfalls
with distinct tracks in a noncomplex environment (bare regolith);
“Complex” labels feature more challenging environments such
as debris fields. Examples of both levels are displayed in Fig.
A4. All “Complex” networks utilize the labels from “Basic,” but
further add complex examples, as described above. In addition,
we included a series of “negative” examples (1024 labels) in the
training data to highlight morphologic features that mimic the
feature of interest, such as sand ripples, etc., but that must not
be classified as rockfalls.

The six trained CNNs are: (I) Ma Basic50, (II) Ma
Basic101, (III) Ma Complex50, (IV) Ma Complex101, (V) Ma/M
Complex50, and (VI) Ma/M Complex101. We trained (I) and (II)
with 2340 labels over 74 and 48 epochs; (III) and (IV) with 4969
labels over 85 and 66 epochs; (V) and (VI) with 13964 labels
over 75 and 111 epochs. Here, (V) and (VI) have been trained
with 4969 Martian and 8995 lunar labels, making (V) and (VI)
the first cross-planet multicamera CNNs for rockfall detection.
The term epoch describes one complete pass of all labels and
images through the network. Training has been performed with
RetinaNet’s focal loss function and a default 80–20 split for
validation. At each epoch, the entire training data stack has
been augmented using various affine transformations, such as
image flipping and rotation, as well as up- and down-sampling

(see Fig. A3). Due to the augmentation, the effective number
of training labels was (I) 173 160, (II) 112 320, (III) 422 365,
(IV) 327 954, (V) 1 047 300, and (VI) 1 550 004. Training was
stopped as soon as the regression of the loss stagnated after
multiple learning rate reductions, i.e., as soon as the validation
accuracy converged.

We tested the performance of all six CNNs with a test
set of four full-swath HiRISE images—a total of 5048 image
patches—taken over different geographic and geomorphic con-
texts: Zunil crater, a graben near Grjota Valles, a slope of a large
crater in Terra Meridiani, and a crater in Syrtis Major (Table A2).
The testing data have been labeled by an experienced human
operator and testing data have not been used for training. The
patches contain a total of 274 rockfalls. All testing images used
have spatial resolutions ranging from 25 to 50 cm/pixel and solar
incidence angles ranging from 51° to 59°. The vast majority
of the used patches do not feature any rockfalls, representing
a realistic testing scenario. A selection of the used patches is
displayed in the Appendix (see Fig. A5) and a general example
of rockfall detections is shown in Fig. 2.

For assessing the performance, we applied four different stan-
dard metrics: 1) recall (r); 2) precision (p); 3) average precision
(AP); and 4) the F1 score. These metrics are calculated based on
three numbers measured during testing: 1) true positives (TPs,
correct detections); 2) false negatives (FNs, missed targets); and
3) false positives (FPs, wrong detections). All metrics describe
different portions or aspects of CNN performance and can be
used to quantify the general CNN detection behavior. Recall rep-
resents the percentage of rockfalls detected (e.g., 25/32 rockfalls
have been detected). In the best case, recall would be 1, meaning
that a CNN has found all rockfalls in the test set. Precision
describes the percentage of rockfalls that have been detected
and classified correctly (8/10 detections are correct). Precision
is therefore a measure for the reliability of a CNN. AP is a
metric that describes the stability of the relation between recall
and precision along varying network confidence levels (here, the
average of the precision at recall levels of 0 to 0.8, in 0.1 steps)
and is therefore, a measure for the overall robustness of a CNN.
The AP applied here is described by

AP =
[p (r0) + p (r0.1) + · · ·+ p (rm)]

n

where m is the maximum applicable/reached recall level (limited
by the assessed networks’ performance) and n is the number of
the applied steps or p(r) values. The F1 score is the harmonic
mean of the recall and precision and is another tool to assess the
relation between the two inputs, particularly in the presence of
high numbers of FNs.

We performed the entire assessment for varying network
confidence thresholds (CT), i.e., the confidence of the CNN
in a detection (the posterior probability output of the CNN).
Usually, the application of lower CTs will result in more de-
tections, increasing recall and decreasing precision. In turn,
the application of higher confidences would result in lower
recall and higher precisions. For this study, CT values ranging
from 0.2 to 0.8 have been investigated. The applied intersection
over union value (IoUtesting) for testing has been defined as
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Fig. 2. Rockfall detections using Ma/M Complex50: One high (88.2%) and
one low (40.9%) confidence TP (white boxes), one FN (yellow box), and one
low confidence FP (43.7%) (red box). Note that the general potential for FPs is
substantial due to the amount of morphology that mimics the feature of interest
(boulder with track), like sand ripples, other aeolian features, boulders without
tracks, craters, and shadows. The downslope direction is towards the top. Please
refer to the web version of this article to view color figures. Detail of HiRISE
image ESP_036624_1720. Image credits: NASA/JPL/UofA.

0.5. IoUtesting describes the required overlap between a CNN
predicted bounding box and the labeled ground truth to count
a detection as a TP during testing. Where required, a standard
nonmaximum suppression filter (NMS) adapted from [44] has
been applied to remove double detections. We used this NMS
with IoUinference = 0.3 during inference. Depending on the
application, a user might be interested in optimizing a CNN
for either maximum recall (missing fewer targets, while hav-
ing many FPs), for maximum precision (few mistakes, even if
many targets are missed), or for a compromise between the two
extremes.

C. Domain Generalization and Multidomain Learning

One of the main limitations of supervised learning is the
access to large quantities of high-quality labels that adequately

describe the feature of interest (rockfall). As lunar and Martian
rockfalls share a common overall physical appearance (see
Fig. 1) and as there are large numbers of labels (8995) available
from a previous study of rockfall detection on the Moon [26],
we included them for the training of two CNNs, (V) and (VI).
The subtle differences in the appearance of rockfalls as well as
in the radiometric properties of the images (HiRISE and NAC)
could be expected to help the resulting CNNs to better gener-
alize, potentially minimizing any present bias, e.g., related to a
geomorphic setting or to label background. In addition, a better
domain generalization might enable a hybrid-CNN to achieve
a more robust performance (increased AP). We investigated
whether the result of such a multidomain learning approach is
beneficial for the detection performance of a CNN or rather
reduces it.

III. RESULTS

The performance of one of the CNNs (Ma/M Complex50) is
visualized for one exemplary image (see Fig. 2), showing two
TPs, one FN, and one FP. More examples of detections in more
complex environments, such as dune fields, debris fields, and
slopes with cross-cutting rockfall tracks, are shown in Figs. A6
and A7 in the Appendix. Average processing time per HiRISE
nonmap projected image (i.e., ∼950 patches) is around 45 s us-
ing a Titan Xp. Performance of all investigated neural networks
for all used confidence thresholds is summarized in Table I and
visualized in Fig. 3. Lower CTs generally produce higher recall
values but lower precisions, while higher CTs generally produce
lower recall values but higher precisions (as expected). The
“Basic” CNNs (I) and (II) achieve very high average precisions
(0.91 and 0.97) but to the cost of a significantly reduced recall.
Fig. 3 suggests that deeper networks (ResNet 101) generally
produce a lower number of FPs, but to the cost of a slightly
reduced recall. Interestingly, multidomain learning with Martian
and lunar data appears to potentially help the CNNs (V) and
(VI) to better generalize, improving the detection precision,
particularly for higher CT values. However, the potentially
improved generalization does not appear to improve the recall
of the respective CNNs. The performance of all tested CNNs is
showcased for one test patch in Fig. 4. (bounding boxes), while
Figs. 5 and A8 report the results of the testing on full-swath
HiRISE image for a graben in the Grjota Valles area and a
slope in Terra Meridiani, where TPs and FPs are displayed
as points. To place the performance of CNN (VI) in context,
Fig. 5 additionally shows all detections that were made by an
experienced human operator.

IV. DISCUSSION

Testing of all trained networks demonstrates the potential of
automated CNN-based mapping of Martian rockfalls (boulders
with tracks) in full HiRISE swaths and on large spatial scales.
The CNNs’ processing speed is about 60–100 times faster than
that of a human operator (for the tested images). The perfor-
mance of the trained and implemented CNNs in combination
with the associated processing times allow for the utilization of
the entire HiRISE image archive to rapidly and effectively scan
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TABLE I
PERFORMANCE RESULTS FOR ALL TRAINED AND TESTED CNNS: MA BASIC50 AND MA BASIC101 (MARS), MA COMPLEX50 AND MA COMPLEX101 (MARS), AS

WELL AS MA/M COMPLEX50 AND MA/M COMPLEX101 (MARS AND MOON); IOU IS 0.5 (SHOWN IN THE HEADER AS IOU50)

Fig. 3. Graphical visualization of the networks’ performance, from left to right: Recall, precision, and F1 score. The colors indicate the different CNNs and the
dashed line represents a cross-planet reference derived with M5101 (a lunar network) on lunar NAC data, see [26]. The x-axis represents the confidence threshold
(CT). Please refer to the web version of this article to view color figures.
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Fig. 4. Visual, exemplary comparison of CNN performance, showing detections with CTs > 0.2. The Ma Basic networks draw larger bounding boxes and
have a significantly lower recall. Please refer to the web version of this article to view color figures. Detail of HiRISE image ESP_03770_1710. Image credits:
NASA/JPL/UofA.

for rockfalls on a global scale—and through newly acquired
data, as MRO’s mission continues.

Interestingly, the utilization of “Basic” and more “Complex”
rockfall labels is clearly represented in the performance (e.g.,
Fig. 3). In general, the CNNs trained with more diverse—and
potentially more problematic or less clear—labels achieve sig-
nificantly higher recall values, but appear to be more easily
confused by features that mimic rockfalls. In turn, the newly
implemented utilization of labels from two different planetary
bodies (domains) appears to enables the respective networks
(V) and (VI) to counter the drawback of a reduced precision, as
encountered by the “Complex” single-domain networks (III) and
(IV). Besides the training on multidomain labels, the generally
increased number of labels could have a positive impact on the

overall performance as well. We will continue to systematically
investigate these observations in future work to explore and
exploit the potential of multiplanetary and multisensor (rockfall)
detectors (multidomain learning).

The placement of feature labels, i.e., their position and size,
for training and testing is a challenging problem, as rockfalls
have a highly variable appearance and as the background within
each bounding box is part of the label itself, although it might
not represent the actual feature of interest. In order to avoid
confusion with static boulders and tracks without boulders, we
draw relatively large boxes to capture the entire rockfall (boulder
with associated track). It has to be noted that these relatively
large boxes also result in an increased background content (as
shown in Fig. A3), such as small boulders, sand ripples, and
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Fig. 5. CNN-driven rockfall mapping with a full-scene HiRISE image in a graben (Grjota Valles area) by Ma/M Complex101 with (a) CT 0.2 and (b) 0.3. Rockfalls
mapped by a human operator are shown in the inset in (c) (white dots). Green dots are TPs, red indicates FPs. The increase of the CT by 0.1 effectively removes
all FPs from the output, while slightly reducing the recall. The majority of FPs is related to aeolian deposits. Processing times are ∼45 min (human) versus 45 s
(CNN). Note that the human processing time would be much longer if not only the graben itself would have been searched. Full HiRISE image ESP_025156_1965.
Image credits: NASA/JPL/UofA. Please refer to the web version of this article to view color figures.

other nonsignal features. In small datasets or in datasets with
limited variation, this background can become dominant and can
negatively influence the filter weights during training, making it
harder for a CNN to identify the actual rockfall during inference
(see “Basic” versus “Complex”). The potential negative influ-
ence of the increased background is very hard to quantify and
remains an interesting subject for future studies with relevant
applications for computer vision in general.

In contrast to rockfall mapping on the Moon, automated
mapping on Mars is affected by the more dynamic Martian
environment, particularly by its atmosphere. This is obvious
from the difference in recall and precision for the lunar reference
[26] and Martian detectors (this study), highlighted by Fig. 3.
Aeolian processes deposit sand ripples and scour, occasionally
in the lee of static boulders. As sand ripples tend to be rather
linear features, the combination of boulder and ripple can mimic
the appearance of a rockfall with track, as shown in Fig. A9.
During training, we took care to include a significant number of
negative “boulder and ripple” examples to sensitize the CNNs
for the subtle differences in their physical appearance. The vast
majority of aeolian FPs have very low confidence scores, usually
lower than 0.3 (see Fig. A9), which facilitates their removal (e.g.,

in Fig. 5). Occasionally, some CNNs assign higher confidence
scores (∼0.4 to ∼0.6) to aeolian FPs by mistake, which is
reflected in the nonperfect (i.e., <1.0) precision scores of some
CNNs in the respective CT range (∼0.4 to ∼0.6). An additional
limitation is created by the spatial resolution of the used HiRISE
images and by the size of the target features, respectively:
When GSD (ground sampling distance) and target size converge,
detection and classification ambiguities are the result—affecting
CNNs in a similar way to experienced human operators. These
ambiguities are a fundamental problem of automated as well as
human-based mapping and will always remain (although being
“shifted in scale”), even if imagery with better spatial resolution
becomes available in the future.

In order to enhance the overall mapping performance and
reliability of the trained detectors, an additional postprocessing
step could be implemented using auxiliary MOLA DEM-derived
slope angle maps (e.g., based on [31] and [32]). As rockfalls are
features that are usually connected to topography gradients, the
slope maps could be used to discard detections in flat terrain,
which are likely FPs caused by aeolian processes. However,
MOLA-guided postfiltering would need to consider: 1) the spa-
tial resolution of the underlying DEMs (200 and 463 m/pix) that
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Fig. 6. Relation of the CNN-predicted bounding box diameter in pixel (x-
axis) and the respective boulder diameter in pixel (y-axis). The linear relation is
highlighted with a least square fit (R2 is 0.851). This first-order approximation
can be applied to estimate rockfall diameters in (meters), using the bounding
box diameter in combination with the spatial resolution of the respective HiRISE
image.

could misrepresent slope conditions and angles of very small
topographic features; 2) local inconsistencies in the DEMs;
and 3) the user-defined cutoff slope angle (rockfall area versus
nonrockfall area).

Fully automated mapping of Martian boulders with tracks, ei-
ther as stand-alone process or in combination with MOLA-based
postfiltering, is feasible and will produce reliable map products,
depending on the selected network and CT criteria. It has to be
kept in mind that the produced rockfall distribution maps might
not be representative of the entire Martian rockfall population
due to the limited recall (<1.0) of all CNNs. Still, their output
can serve as big data foundation for statistical analyses and
can directly inform and focus future mapping efforts that can
perform follow up investigations in greater detail. For example,
human operators could focus their attention on areas highlighted
by the CNN, not scour the whole image. As the CNN-driven
mapping proceeds, the neural networks will collect more and
more rockfall examples (labels), which will help us to train new
generations of CNNs with enhanced capabilities, increasing the
value of the produced output as time passes.

As observed in a previous study [26], the diameter of the
CNN-placed bounding boxes is related to the physical diameter
of the detected boulders (see Fig. A4). This relation has been
quantified with the testing dataset and is plotted in Fig. 6. This
additional information further enriches the value of the produced
data, as it enables, e.g., rockfall magnitude and spatial frequency
analyses, which are useful to investigate the relation between
rockfall abundance and proximity to tectonic features, among
others. It has to be noted that this relation strongly depends on
the quality and consistency of the labels placed by the human
operators and only represents a first-order approximation.

V. CONCLUSION

This study demonstrates the feasibility of using off-the-shelf
CNNs in combination with a novel multidomain learning ap-
proach to efficiently extract new and yet unexplored information
from the growing HiRISE big data stack. The trained CNNs are

capable of mapping Martian rockfalls orders of magnitude faster
than a human operator, and achieve inference performances that
can be deployed to produce statistically relevant products.

Testing of six different CNNs showed that training data com-
plexity and network depth directly affect the detection perfor-
mance, where “Complex” CNNs achieve significantly higher
recall, but slightly reduced precision values, potentially caused
by the more complex label background. The application of
deeper networks, such as a ResNet 101, has proven to generally
benefit the average precision of all tested CNNs. The novel
application of multidomain learning principles, using a com-
bination of rockfall labels from the Moon and Mars, resulted in
an aparent, further improvement of detection precision values,
particularly for higher confidence scores. In summary, deep
multidomain networks trained on more complex data achieved
the peak overall performance in this study. Future work will
elaborate on the beneficial impact of multidomain training and
domain generalization, as well as on the influence of label size,
shape, and background.

MOLA slope map-based postfiltering could be used to effec-
tively remove FPs and to further improve the reliability of the
CNN output for subsequent applications. The trained and tested
CNNs represent a capable tool that will support the scientific
community in characterizing Mars’ past and current endogenic
and exogenic activity, among other highly relevant research
questions.

APPENDIX

Supplementary information is shown in a separate file.
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